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Abstract—With the vast development of artificial intelligence, 

machine learning is becoming more widely used. One of the loss 

function optimization algorithms in machine learning is gradient 

descent. The paper examines the role of summation and recurrence 

relations in determining loss functions for gradient descent, 

emphasizing their theoretical and computational significance. In 

order to provide insights into the convergence behavior and 

computational efficiency of gradient descent, summation and 

recurrence relations techniques are used to describe the cumulative 

influence of errors over training data. This paper highlight how 

crucial these mathematical concepts are for improving 

optimization strategies and offer a strong basis for future 

developments in machine learning. 

 

Keywords—Summation, Recurrence Relations, Gradient 

Descent.  

 

 

I.   INTRODUCTION 

In machine learning, gradient descent is a basic optimization 

technique that is widely used to iteratively minimize loss 

functions, enabling models to efficiently learn from data. Precise 

calculations of the loss function and its gradient, which directly 
influence parameter updates, are essential to the process's 

effectiveness. Mathematical methods like summation and 

recurrence relations, which are the foundation of many machine 

learning systems, are essential to these calculations. 

To compute mistakes across the training data and provide a 

comprehensive assessment of the model's performance, 

summation is essential. It computes individual errors from every 

data point into one complete metric, enabling the model to 

evaluate its overall performance in relation to the whole dataset. 

This collection establishes the basis for determining essential 

metrics, like mean squared error or cross-entropy loss, which are 

important for directing the learning process. By accounting for 

the total impact of errors, summation guarantees that the 

gradient descent algorithm is guided by the overall patterns in 

the data, instead of individual cases of false prediction. 

 Recurrence relations streamline the sequential updates 

needed for gradient descent, allowing for a clearer depiction of 

iterative calculations. These relationships offer a structured 

method to connect every iteration based on the previous one, 

which simplifies computation and enhances clarity in the 

optimization procedure. By reflecting the iterative aspect of 

parameter changes, recurrence relations also help in analyzing 

convergence characteristics, assisting in assessing if the 

algorithm is moving toward an optimal solution. Collectively, 

these mathematical frameworks provide improved insight into 

the structure of loss functions, the interplay among model 

parameters and data, and the fundamental dynamics of 

convergence behavior. 

This paper is intended to examine the application of 

summation and recurrence relations within gradient descent, 

emphasizing their theoretical significance and computational 

effects. This study offers a better insight into the role of these 

mathematical techniques in loss function computation by 

analyzing how they support the iterative learning process. 

 

II.  THEORETICAL FRAMEWORK 

A. Summation 
Summation, represented by sigma notation, is a mathematical 

process used to find the total of a series of numbers. It offers a 

brief method to depict the sum of a sequence of terms. 

 

∑ 𝑎𝑖

𝑛

𝑖=𝑚

 

 

The summation notation instructs us to substitute each value 

of 𝑖 from 𝑚 (the lower bound) to 𝑛 (the upper bound) into 

expression 𝑎𝑖, compute the terms, and then add them together. 

The result is the total sum of the sequence. 

 

 ∑ ∑ xij
n2
j=n1

m2
i=m1

 

 

Nested summation builds upon this idea by performing sums 

across several dimensions, with one summation taking place 

inside another. This method is frequently used to illustrate more 

intricate associations, like summing values throughout rows and 

columns of a dataset or merging various hierarchy levels. 

B. Recurrence Relations 
A recurrence relation is a mathematical expression that 

specifies each term in a sequence by referring to one or more of 

its earlier terms. It offers a structured method to create sequences 

or series that adhere to particular rules or patterns. For example, 

if 𝑎𝑛 denotes the 𝑛𝑡ℎ term of a sequence, a recurrence relation 

might define 𝑎𝑛 based on the previous terms in the sequence. 

This function embodies the conversion or connection between 

successive terms. 
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For instance, in the scenario of a straightforward recurrence 

relation, 𝑎𝑛 = 𝑓(𝑎𝑛−1), the function f illustrates how every term 

is obtained from the previous one. A typical example is the 

Fibonacci sequence, where the starting values are set as 𝑎0 = 1 

and 𝑎1 = 1, with later terms calculated using the formula 𝑎𝑛 =
𝑎𝑛−1 + 𝑎𝑛−2. This relation produces the sequence: 1, 1, 2, 3, 5, 

8, 13, ..., in which every term is the total of the two previous 

terms. 

 

Recurrence relations are deemed linear homogeneous when 

they consist of a linear combination of previous terms without 

any extra external terms. This kind of relationship is expressed 

as:  

𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 + ⋯ + 𝑐𝑘𝑎𝑛−𝑘 

 

where 𝑐1, 𝑐2, … , 𝑐𝑘 are constants, with 𝑐𝑘 not equal to zero. 

The answer to a linear homogeneous recurrence relation is 

frequently obtained by proposing a general solution in the 

format 𝑎𝑛 = 𝑟𝑛, with r representing a constant. Inserting this 

into the equation yields the characteristic equation: 

 

𝑟𝑘 − 𝑐1𝑟𝑘−1 − 𝑐2𝑟𝑘−2 − ⋯ − 𝑐𝑘 = 0. 
  

The equation above is the characteristic equation of the 

recurrence relation, and its characteristic roots represent the 

solutions to the equation. 

 

C. Loss Function 
 A loss function mathematically expresses the difference 

between a model's predicted output and the actual target values. 

It measures the difference, offering a metric that directs the 

optimization procedure in machine learning and statistical 

models. The main aim of the loss function is to assess the 

model's performance and act as the basis for modifying 

parameters to enhance accuracy. 

A loss function, 𝐿, takes as input the predicted value, 𝑦pred, 

and the actual target value,  ytrue, and outputs a scalar value that 

reflects the degree of error in the prediction. Formally, a loss 

function can be expressed as:  

 

𝐿(𝑦true, 𝑦pred) 

 
For models with multiple predictions, the overall loss is 

computed by aggregating individual losses across all data 

points. This is commonly represented as: 

 

𝐿total =
1

𝑛
∑ 𝐿 (𝑦true

(𝑖)
, 𝑦pred

(𝑖)
)

𝑛

𝑖=1

 

 

Some loss functions in regression models, such as Mean 

Squared Error (MSE) and Mean Absolute Error (MAE), can be 

expressed as: 

MSE =
1

𝑛
∑ (𝑦pred

(𝑖)
− 𝑦true

(𝑖)
)

2
𝑛

𝑖=1

 

 

MAE =
1

𝑛
∑ |𝑦pred

(𝑖)
− 𝑦true

(𝑖)
|

𝑛

𝑖=1

 

 
While other loss functions in classification models, such as 

Cross-Entropy Loss and Hinge Loss, can be expressed as: 

 

Cross-Entropy = −
1

𝑛
∑[𝑦true

(𝑖)
log(𝑦pred

(𝑖)
)

𝑛

𝑖=1

+ (1 − 𝑦true
(𝑖)

) log(1 − 𝑦pred
(𝑖)

)] 

 

Hinge Loss =
1

𝑛
∑ 𝑚𝑎𝑥(0,1 − 𝑦true

(𝑖)
⋅ 𝑦pred

(𝑖)
)

𝑛

𝑖=1

 

 

The loss function acts as the objective to minimized 

throughout the training process. Optimization techniques, like 

gradient descent, adjust model parameters in iterations to 

minimize the loss. The gradient of the loss function directs the 

modifications, taking the model towards an ideal solution. 

 

D. Gradient Descent 
 Gradient descent is a key optimization technique commonly 

used in machine learning, statistics, and computational 

mathematics to reduce a specific objective function. The 

algorithm works in iterations, modifying model parameters to 

minimize the function's value, eventually leading to an optimal 

solution. The iterative characteristic of gradient descent makes 

it especially useful for high-dimensional issues, where finding 

analytical solutions is frequently unfeasible. 

 

 
Figure 1. Gradient Descent Algorithm 

Source: [2] 

 

At its essence, gradient descent aims to find the minimum of a 

loss function, 𝐿(θ), where θ represents the parameters of a 

model. The loss function measures the difference between the 

predicted and actual values, and reducing this error guarantees 

that the model's predictions improve in accuracy. The gradient 

of the loss function, ∇𝐿(θ), provides the direction of steepest 

ascent, pointing toward the values of  θ where the function 

grows most rapidly. By moving in the reverse direction of the 

gradient, the algorithm guarantees a reduction in the loss 

function value with every iteration. The general update rule for 

gradient descent is given by:  

 

θ𝑡+1 = θ𝑡 − α∇𝐿(θ𝑡) 

 

Where α is the learning rate, a hyperparameter that determines 

the step size of each update. The choice of α is important: a 
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learning rate that is too small leads to slow convergence, while 

one that is too large risks overshooting the minimum or causing 

divergence. This balance is essential to ensure both efficiency 

and stability in the optimization process.  

Gradient descent can be categorized into three primary types 

depending on the method used for calculating the gradient: 

 

𝜃𝑡+1 = 𝜃𝑡 − 𝛼 ⋅
1

𝑚
∑ ∇𝐿 (𝑦(𝑖), 𝑦(𝑖)̂)

𝑚

𝑖=1

 

 

1. Batch Gradient Descent: In this method, the gradient is 

calculated by using the complete dataset. Although it 

guarantees a steady decline towards the minimum, batch 

gradient descent can be costly in terms of computation for 

extensive datasets, since it necessitates handling all the 

data during each iteration. 

 

𝜃𝑡+1 = 𝜃𝑡 − 𝛼 ⋅ ∇𝐿(𝑦(𝑖), 𝑦(𝑖)̂) 

 

2. Stochastic Gradient Descent (SGD): Rather than using the 

full dataset, SGD determines the gradient using just one 

data point at each iteration. Although this approach 

improves computational efficiency, the updates may 

cause noise, resulting in oscillations near the minimum 

instead of a smooth convergence. 

 

𝜃𝑡+1 = 𝜃𝑡 − 𝛼 ⋅
1

𝑏
∑ ∇𝐿 (𝑦(𝑖), 𝑦(𝑖)̂)

𝑖∈𝐵

 

 

3. Mini-Batch Gradient Descent: This version finds a middle 

ground between batch and stochastic methods by 

calculating the gradient over small groups (mini-batches) 

of the data. Mini-batch gradient descent is commonly 

used in practice because of its computational 

effectiveness and consistent updates. 

The effectiveness of gradient descent depends on the 

characteristics of the loss function. For convex functions, since 

every local minimum is a global minimum, gradient descent is 

assured to reach the optimal solution, as long as the learning rate 

is selected correctly. Nonetheless, for non-convex functions, 

like those frequently found in neural networks, gradient descent 

might settle at a local minimum or saddle point instead of 

reaching the global minimum. Nonetheless, non-convex 

optimization frequently produces solutions that are adequately 

effective for real-world applications. 

 

E. Linear Regression  

Linear regression is a basic statistical and machine learning 

method used to model and examine the connection between one 

or more independent variables (features) and a dependent 

variable (target). The main objective of linear regression is to 

identify the optimal line or hyperplane that reduces the 

difference between the predicted and actual values of the 

dependent variable. 

The linear regression model assumes that the relationship 

between the input features and the target variable is linear. For 

a single feature, the model is represented as: 

 

𝑓𝑤,𝑏(𝑥(𝑖)) = 𝑤𝑥(𝑖) + 𝑏 

 

Where: 

- 𝑓𝑤,𝑏(𝑥(𝑖)) is the predicted value for the 𝑖𝑡ℎ data point 

- 𝑥(𝑖) is the input feature value. 

- 𝑤 is the weight (slope of the line) that defines the 

impact of the feature. 

- 𝑏 is the bias (intercept), which shifts the line vertically. 

For multiple features, the model generalizes to:  

 

fw,b(x(i))  = w⊤ x(i)  +  b 

 

Where: 

- 𝑥(𝑖) is the vector of feature values for the 𝑖𝑡ℎ data point. 

- 𝑤 is the vector of weights corresponding to the 

features. 

- w⊤ x(i) is the dot product of the weights and features. 

 

 

   To find the optimal values of 𝑤 and 𝑏, gradient descent is often 

used. Gradient descent iteratively adjusts 𝑤 and 𝑏 in the 

direction that reduces the loss function. The update rules are 

given by:  

𝑤 ← 𝑤 − α
∂𝐿

∂𝑤
,  𝑏 ← 𝑏 − α

∂𝐿

∂𝑏
 

 

Where: 

- α is the learning rate, controlling the step size. 

- 
∂𝐿

∂𝑤
 ,

∂𝐿

∂𝑏
  are the gradients of the loss function with 

respect to 𝑤 and 𝑏 

 

For multiple features, the gradient with respect to the weights 

becomes:  

∂𝐿

∂𝑤
=

1

𝑚
∑(𝑓𝑤,𝑏(𝑥(𝑖)) − 𝑦(𝑖))𝑥(𝑖)

𝑚

𝑖=1

 

 

III.   IMPLEMENTATION 

This implementation uses Python to perform simple linear 

regression through gradient descent, constructed completely 

from scratch. The aim is to highlight the importance of 

summation and recurrence relations in the computational steps. 
 

A. Tools 

In this implementation, we will make use of: 

- Numpy 

- Matplotlib 

- Math 
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Figure 2. Importing python libraries 

Source: writer’s archive 

B. Load Dataset  

 
Figure 3. Load artificial dataset 

Source: writer’s archive 

 

C. Compute Loss Function 

 
Figure 4. compute_loss function 

Source: writer’s archive 

 

The compute_loss function determines the Mean Squared 

Error (MSE) cost associated with linear regression, It takes the 

input data 𝑥 (attributes), 𝑦 (outcomes), and the model 

parameters 𝑤 (weights) and 𝑏 (intercept). The function iterates 

through every data point, determines the predicted value using 

the linear equation, and calculates the square of the error 

between the predicted value and the real target value. 

 

D. Equations  

 

 
Figure 5. compute_gradient function 

Source: writer’s archive 

 

The compute_gradient function determines the gradients of 

the loss function concerning the model parameters 𝑤 (weight) 

and 𝑏 (bias) in linear regression. The inputs consist of the feature 

values 𝑥, target values 𝑦, along with the current parameters 𝑤 

and 𝑏. For each data point, it calculates the error between the 

predicted value 𝑓𝑤𝑏 = 𝑤 ⋅ 𝑥[𝑖] + 𝑏 and the actual target value 

𝑦[𝑖]. The gradient with respect to 𝑤 (𝑑𝑗_𝑑𝑤) is computed by 

multiplying this error by the feature value 𝑥[𝑖] and the gradient 

with respect to 𝑏 (𝑑𝑗_𝑑𝑏) is the error itself. These individual 

gradients are totaled across all data points and subsequently 

averaged by dividing by the total number of data points. The 

function returns the averaged gradients (𝑑𝑗_𝑑𝑤) and (𝑑𝑗_𝑑𝑏). 

 

E. Gradient Descent 

 
Figure 6. gradient_descent function 

Source: writer’s archive 

 

The gradient_descent function repeatedly modifies the model 

parameters 𝑤 (weight) and 𝑏 (bias) using the 

gradients derived from the gradient_function. Beginning with 

starting values of 𝑤 and 𝑏 , the function modifies them towards 

reducing the loss function. The learning rate (α) regulates the 

magnitude of the steps taken for these updates. The historical 

data of the loss values (J_history) and parameter values 

(𝑝_ℎ𝑖𝑠𝑡𝑜𝑟𝑦) is recorded for future visualization. After the 

specified number of iterations, the updated 𝑤,𝑏 and the history 

of loss and parameters are returned. 
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Figure 7. gradient_descent_recursive function 

Source: writer’s archive 

 

Alternatively, we can also make gradient descent with a 

recursive approach, where each iteration is handled by a 

recursive call instead of using a loop. The base case checks if 

the current iteration index (𝑖) exceeds the specified number of 

iterations (num_iters),  in which case it stops the recursion and 

returns the final results. At each recursive step, the function 

calculates the gradients (𝑑𝑗_𝑑𝑤) and (𝑑𝑗_𝑑𝑏) using the 

provided gradient_function. These gradients are used to modify 

the parameters 𝑤 and 𝑏 using the gradient descent formula. The 

revised values are subsequently saved in the history lists 

together with the calculated loss via the compute_loss function.  

 

F. Gradient Descent Visualization 

 
Figure 8. final 𝑤 and 𝑏 

Source: writer’s archive 

 

The code runs gradient descent twice, once using a recursive 

approach and once using an iterative approach to find the 

optimal values of 𝑤 (weight) and 𝑏 (bias) that minimize the lost 

function. It initializes the parameters and settings, then prints the 

final values of 𝑤 and 𝑏 for both methods, comparing their 

results. 

 

 
Fig 9. plot_contour_gradient function 

Source: writer’s archive 

 

The code runs a function that plots the contour of a loss 

function 𝐽(𝑤, 𝑏) for linear regression and overlays the gradient 

descent path. A helper function, inbounds, also ensures that 

arrows are only plotted if they fall within the visible plot range. 

 

  

Figure 10. plot_loss_vs_iteration function 

Source: writer’s archive 

 

    The code runs a function, plot_loss_vs_iteration, that displays 

how the loss function behaves across iterations in the process of 

gradient descent. It creates two subplots, left plot displays the 

loss function values over the initial 100 iterations to observe the 
early stages rapid changes, while right plot displays the loss 

function values starting from the 1000th iteration onward to 

observe the convergence at later stages. 

 

IV.   RESULTS  

A. Final 𝑤 and 𝑏 
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Figure 11. Gradient decent 𝑤 and 𝑏 

Source: writer’s archive 

 

This result shows that the recursive or iterative approach, does 

not influence the convergence of the gradient descent algorithm, 

provided that the mathematical calculations and 

hyperparameters (learning rate and iteration count) stay the 

same. Both methods successfully reduce the loss function, 

resulting in identical optimal parameters.  

 

B. Gradient descent contour map 

 
Figure 12. Gradient descent contour map 

Source: writer’s archive 

 

The gradient descent contour map illustrates that during each 

iteration, the algorithm gradually shifts toward areas of reduced 

loss, ultimately stopping at the minimum point where the loss 

function reaches its lowest value. This is depicted on the contour 

map as a collection of red dots and arrows that outline the path 

of the parameters over the loss landscape. As the gradient 

descent algorithm nears the optimal values, the updates to the 

parameters shrink, ensuring smooth convergence and preventing 

overshooting. This visual representation validates that the 

optimization procedure is operating properly and effectively 

minimizes the error at every stage. 

 

C. Plot loss vs iteration 

 

Figure 13. Loss vs iteration  

Source: writer’s archive 

 

The graph shows loss in relation to iterations indicates that 

initially in gradient descent, the loss declines rapidly as the 

algorithm makes larger strides driven by steep gradients. 

Gradually, the expenses drop at a slower rate, and the curve 

levels off as the algorithm nears the minimum. Ultimately, the 

loss stabilize, indicating that the algorithm has reached or is 

nearing the optimal parameters. 

 

V.   CONCLUSION 

This research explored the importance of summation and 

recurrence relations in the gradient descent optimization 

method. Summation provides a clear way to combine the total 

error from all training samples, forming the basis for loss 

function calculations. This ensures that the optimization process 

focuses on the model's overall performance rather than 

individual cases. 

Recurrence relations allow for a systematic and repetitive 

method for adjusting parameters. It is possible to standardize 

and simplify the calculations needed for each step by describing 

the gradient descent updates as recurrence formulae. This 

guarantees steady progress in lowering the loss function and 

offers a precise mathematical foundation for understanding the 

algorithm's convergence behavior. 

Summation and recurrence relations, when combined, form 

the core of gradient descent, underpinning both its theoretical 

frameworks and real-world applications. These mathematical 

concepts are crucial for enabling optimization in machine 

learning models and ensure that gradient descent works 

efficiently whether used recursively or iteratively. 

 

VI.  Appendix 
Link Video: 

https://www.canva.com/design/DAGbCzc9EMM/PtwpeA7q

bBHVizJL0-

mldQ/view?utm_content=DAGbCzc9EMM&utm_campaign=d

esignshare&utm_medium=link&utm_source=recording_view 
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